Алгебра логики. Задача 4-2
Укажите, какое логическое выражение равносильно выражению ¬(A ∨ B) ∧ ¬(A ∧ ¬(B ∧ ¬A))
1) (A ∨ ¬B) ∧ (¬A ∨ B)
2) ¬A ∧ ¬B
3) A ∨ B
Самая актуальная информация оборудование для переработки молока тут.
4) (A ∧ B) ∨ ¬A
Ответ
2
Решение
Преобразуем выражение: \( \overline{(A + B)} ⋅ \overline{(A ⋅ \overline{(B ⋅ \overline{A})})} \) = \( \overline{A} ⋅ \overline{B} ⋅ (\overline{A} + (B ⋅ \overline{A})) \) = \( \overline{A} ⋅ \overline{B} ⋅ \overline{A} + \overline{A} ⋅ \overline{B} ⋅ (B ⋅ \overline{A}) \) = \( \overline{A} ⋅ \overline{B} + \overline{A} ⋅ \overline{B} ⋅ B ⋅ \overline{A} \) = \( \overline{A} ⋅ \overline{B} + 0 \) = \( \overline{A} ⋅ \overline{B} \)
Полученное выражение соответствует второму варианту ответа.